METHOD 8082 POLYCHLORINATED BIPHENYLS (PCBs) BY GAS CHROMATOGRAPHY
8.0 QUALITY CONTROL
8.1 Refer to Chapter One and Method 8000 for specific quality control (QC) procedures. Quality control procedures to ensure the proper operation of the various sample preparation techniques can be found in Method 3500. If an extract cleanup procedure was performed, refer to Method 3600 for the appropriate quality control procedures. Each laboratory should maintain a formal quality assurance program. The laboratory should also maintain records to document the quality of the data generated.
8.2 Quality control procedures necessary to evaluate the GC system operation are found in Method 8000, Sec. 7.0 and include evaluation of retention time windows, calibration verification and chromatographic analysis of samples.
8.3 Initial Demonstration of Proficiency - Each laboratory must demonstrate initial proficiency with each sample preparation and determinative method combination it utilizes, by generating data of acceptable accuracy and precision for target analytes in a clean matrix. The laboratory must also repeat the following operations whenever new staff are trained or significant changes in instrumentation are made. See Method 8000, Sec. 8.0 for information on how to accomplish this demonstration.
8.3.1 The QC Reference Sample concentrate (Method 3500) should contain PCBs as Aroclors at 10-50 mg/L for water samples, or PCBs as congeners at the same concentrations. A 1-mL volume of this concentrate spiked into 1 L of organic-free reagent water will result in a sample concentration of 10-50 µg/L. If Aroclors are not expected in samples from a particular source, then prepare the QC reference samples with a mixture of Aroclors 1016 and 1260. However, when specific Aroclors are known to be present or expected in samples, the specific Aroclors should be used for the QC reference sample.
8.3.1.1 The frequency of analysis of the QC reference sample analysis is equivalent to a minimum of 1 per 20 samples or 1 per batch if less than 20 samples.
8.3.1.2 If the recovery of any compound found in the QC reference sample is less than 80 percent or greater than 120 percent of the certified value, the laboratory performance is judged to be out of control, and the problem must be corrected. A new set of calibration standards should be prepared and analyzed.
8.3.2 Include a calibration standard after each group of 20 samples (it is recommended that a calibration standard be included after every 10 samples to minimize the number of repeat injections) in the analysis sequence as a calibration check. The response factors for the calibration should be within 15 percent of the initial calibration. When this continuing calibration is out of this acceptance window, the laboratory should stop analyses and take corrective action.
8.3.3 Whenever quantitation is accomplished using an internal standard, internal standards must be evaluated for acceptance. The measured area of the internal standard must be no more than 50 percent different from the average area calculated during calibration. When the internal standard peak area is outside the limit, all samples that fall outside the QC criteria must be reanalyzed.
8.4 Sample Quality Control for Preparation and Analysis - The laboratory must also have procedures for documenting the effect of the matrix on method performance (precision, accuracy, and detection limit). At a minimum, this includes the analysis of QC samples including a method blank, a matrix spike, a duplicate, and a laboratory control sample (LCS) in each analytical batch and the addition of surrogates to each field sample and QC sample.
8.4.1 Documenting the effect of the matrix should include the analysis of at least one matrix spike and one duplicate unspiked sample or one matrix spike/matrix spike duplicate pair. The decision on whether to prepare and analyze duplicate samples or a matrix spike/matrix spike duplicate must be based on a knowledge of the samples in the sample batch. If samples are not expected to contain target analytes, laboratories should use a matrix spike and matrix spike duplicate pair, spiked with the Aroclor 1016/1260 mixture. However, when specific Aroclors are known to be present or expected in samples, the specific Aroclors should be used for spiking. If samples are expected to contain target analytes, then laboratories may use one matrix spike and a duplicate analysis of an unspiked field sample.
8.4.2 A Laboratory Control Sample (LCS) should be included with each analytical batch. The LCS consists of an aliquot of a clean (control) matrix similar to the sample matrix and of the same weight or volume. The LCS is spiked with the same analytes at the same concentrations as the matrix spike. When the results of the matrix spike analysis indicate a potential problem due to the sample matrix itself, the LCS results are used to verify that the laboratory can perform the analysis in a clean matrix.
8.4.3 See Method 8000, Sec. 8.0 for the details on carrying out sample quality control procedures for preparation and analysis.
8.5 Surrogate recoveries - The laboratory must evaluate surrogate recovery data from individual samples versus the surrogate control limits developed by the laboratory. See Method 8000, Sec. 8.0 for information on evaluating surrogate data and developing and updating surrogate limits.
8.6 It is recommended that the laboratory adopt additional quality assurance practices for use with this method. The specific practices that are most productive depend upon the needs of the laboratory and the nature of the samples. Whenever possible, the laboratory should analyze standard reference materials and participate in relevant performance evaluation studies.