ASTM D6730 Test Method for Individual Components in Spark Ignition Engine Fuels
ASTM D6730 Standard Test Method for Determination of Individual Components in Spark Ignition Engine Fuels by 100-Metre Capillary (with Precolumn) High-Resolution Gas Chromatography
4. Summary of Test Method
4.1 A representative sample of the petroleum liquid is introduced into a gas chromatograph equipped with an open tubular (capillary) column coated with a methyl silicone liquid phase, modified with a capillary precolumn. Helium carrier gas transports the vaporized sample through the column, in which it is partitioned into individual components which are sensed with a flame ionization detector as they elute from the end of the column. The detector signal is presented on a strip chart recorder or digitally, or both, by way of an integrator or integrating computer. Each eluting component is identified by comparing its retention time to that established by analyzing reference standards or samples under identical conditions. The concentration of each component in mass % is determined by normalization of the peak areas after correction with detector response factors. Unknown components are reported as a total unknown mass %.

5. Significance and Use
5.1 Knowledge of the individual component composition (speciation) of gasoline fuels and blending stocks is useful for refinery quality control and product specification. Process control and product specification compliance for many individual hydrocarbons can be determined through the use of this test method.

5.2 This test method is adopted from earlier development and enhancement. The chromatographic operating conditions and column tuning process, included in this test method, were developed to provide and enhance the separation and subsequent determination of many individual components not obtained with previous single-column analyses. The column temperature program profile is selected to afford the maximum resolution of possible co-eluting components, especially where these are of two different compound types (for example, a paraffin and a naphthene).

5.3 Although a majority of the individual hydrocarbons present in petroleum distillates are determined, some co-elution of compounds is encountered. If this test method is utilized to determine bulk hydrocarbon group-type composition (PONA), the user of such data should be cautioned that some error will be encountered due to co-elution and a lack of identification of all components present. Samples containing significant amounts of olefinic or naphthenic, or both, constituents above octane may reflect significant errors in PONA-type groupings.

5.4 If water is or is suspected of being present, its concentration is determined by the use of Test Method D1744. Other compounds containing oxygen, sulfur, nitrogen, and so forth may also be present, and may co-elute with the hydrocarbons. When known co-elution exists, these are noted in the test method data tables. If determination of these specific compounds is required, it is recommended that test methods for these specific materials be used, such as Test Method D4815 and D5599 for oxygenates, Test Method D5580 for aromatics, and Test Method D5623 for sulfur compounds.