ASTM D524 method for Ramsbottom carbon residue of petroleum products
1. Scope
1.1 This test method covers the determination of the amount of carbon residue (Note 1) left after evaporation and pyrolysis of an oil, and it is intended to provide some indication of relative coke-forming propensity. This test method is generally applicable to relatively nonvolatile petroleum products which partially decompose on distillation at atmospheric pressure. This test method also covers the determination of carbon residue on 10% (V/V) distillation residues (see Section 10). Petroleum products containing ash-forming constituents as determined by Test Method D482, will have an erroneously high carbon residue, depending upon the amount of ash formed (Notes 2 and 3).
NOTE 1 - The term carbon residue is used throughout this test method to designate the carbonaceous residue formed during evaporation and pyrolysis of a petroleum product. The residue is not composed entirely of carbon, but is a coke which can be further changed by pyrolysis. The term carbon residue is continued in this test method only in deference to its wide common usage.
NOTE 2 - Values obtained by this test method are not numerically the same as those obtained by Test Method D189, or Test Method D4530. Approximate correlations have been derived (see Fig. X2.1) but need not apply to all materials which can be tested because the carbon residue test is applicable to a wide variety of petroleum products. The Ramsbottom Carbon Residue test method is limited to those samples that are mobile below 90°C.
NOTE 3 - In diesel fuel, the presence of alkyl nitrates such as amyl nitrate, hexyl nitrate, or octyl nitrate, causes a higher carbon residue value than observed in untreated fuel, which can lead to erroneous conclusions as to the coke-forming propensity of the fuel. The presence of alkyl nitrate in the fuel can be detected by Test Method D4046.
NOTE 4 - The test procedure in Section 10 is being modified to allow the use of a 100-mL volume automated distillation apparatus. No precision data is available for the procedure at this time, but a round robin is being planned to develop precision data. The 250-mL volume bulb distillation method described in Section 10 for determining carbon residue on a 10 % distillation residue is considered the referee test.
1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
2. Referenced Documents
2.1 ASTM Standards:
D86 Test Method for Distillation of Petroleum Products at Atmospheric Pressure
D189 Test Method for Conradson Carbon Residue of Petroleum Products
D482 Test Method for Ash from Petroleum Products
D4046 Test Method for Alkyl Nitrate in Diesel Fuels by Spectrophotometry
D4057 Practice for Manual Sampling of Petroleum and Petroleum Products
D4175 Terminology Relating to Petroleum, Petroleum Products, and Lubricants
D4177 Practice for Automatic Sampling of Petroleum and Petroleum Products
D4530 Test Method for Determination of Carbon Residue (Micro Method)
E 1 Specification for ASTM Liquid-in-Glass Thermometers
E 133 Specification for Distillation Equipment
2.2 Energy Institute Standard:
Appendix AP-A Specifications - IP Thermometers
3. Terminology
3.1 Definitions:
3.1.1 carbon residue, n - the residue formed by evaporation and thermal degradation of a carbon containing material.
3.1.1.1 Discussion - The residue is not composed entirely of carbon but is a coke that can be further changed by carbon pyrolysis. The term carbon residue is retained in deference to its wide common usage.